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Abstract

Recovering the epipolar geometry of a stereo image pair
is important for many computer and robotic vision systems,
for performing motion recovering, 3D reconstruction and,
more recently, image retrieval from large databases. Most
state-of-the-art methods for estimating the fundamental ma-
trix rely solely in putative image correspondences, and,
therefore, heavily depend on the capability of the low-level
image features to provide enough distinctiveness capabili-
ties for establishing correct matches.

In this paper we present a robust method for estimating
the fundamental matrix based on all image features, and
not only matching points. This is done by selecting the best
correspondent keypoints between views through a proper
weighting function that fuses local appearance of keypoints
and distance to the epipolar lines. Several distance weight-
ing functions are compared, with an intuitive theoretical
analysis of the role of each function parametrization being
analyzed. Experimental evidence shows that our approach
outperforms the current state-of-the-art methods in terms of
error magnitude, number of correct matches provided and
computational time.

1. Introduction

The recovering of the epipolar geometry of an image pair
has been intensively studied due to its usefulness in many
computer and robotic vision applications, such as 3D re-
construction [18, 21], self calibration [7], and image local-
ization [17] and retrieval [1]. The interest in the estimation
of the epipolar geometry dates back to [10] where Longuet-
Higgins introduced the essential matrix. More recently, the
application of classic projective geometry enabled the de-
velopment of the fundamental matrix (F). This matrix de-
scribes the projective relation between two images, encap-
sulating all the information that is possible to recover with
a pair of fully uncalibrated cameras [7, 18].

Most state-of-the-art methods for estimating F matrix
take as input a set of putative point correspondences [12,15]
between a stereo image pair. A straightforward solution for
the estimation of the F matrix would involve three steps:
(i) stack the observation obtained from the matching step;
(ii) build a suitable cost function, and (iii) find the correct
solution using a minimization procedure. Due to the fre-
quent presence of erroneous matches, this approach must
be preceded by a robust estimation step that finds a suitable
initialization for the fundamental matrix. The robust esti-
mation of the fundamental matrix is typically achieved by
running the 7- or 8-point algorithm within a Sample Con-
sensus framework [2–4, 14, 19, 21, 22]. The hypotheses are
ranked according to a certain criterion and the set of pu-
tative correspondences is divided into inliers and outliers
based on how well they fit the epipolar geometry defined by
the winning candidate.

In this paper we propose a novel cost function that fuses
the geometric error with local feature appearance, and that
can be directly plugged into the existing robust estimation
frameworks. Our contributions are the following:

• A novel cost function for the estimation of the funda-
mental matrix that uses local image appearance [9, 16]
and geometric error [7]. We provide an intuitive expla-
nation about the role of both features appearance and
distance weighting functions. We briefly explain how
to used this new cost function in RANSAC [4, 5] and
MAPSAC [21];
• A new algorithm for estimating the fundamental ma-

trix is presented. We start by using the proposed cost
function inside a MAPSAC framework to obtain an
initial estimation of F. The estimation is then refined
using a set of newly selected correspondences that ver-
ify appearance and geometric constraints.

1.1. Paper Outline and Notation

The paper outline is as follows: Section 2 reviews the
background theory related with the fundamental matrix and
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robust estimation schemes. Section 3 introduces the new
cost function, and studies the role of different distance
weighting functions during the fundamental matrix estima-
tion. Additionally, we show how to include the proposed
cost function in a RANSAC/MAPSAC framework and pro-
pose a new refinement step that provides state-of-the-art
performance for the estimation of the fundamental matrix.
The new algorithm is evaluated in simulation experiments
with ground truth. Section 4 presents the results in four
stereo pairs without ground truth using the benchmark cri-
teria used in [2] and the discussion of the obtained results.
We also include a Structure-from-Motion (SfM) experiment
to assess the utility of our algorithm in this type of applica-
tions. Finally, we draw conclusions and point towards new
directions of work in section 5.

To improve the readability of the manuscript we define
the following notation: Matrices are represented by sym-
bols in sans serif font, e.g. G, and image signals are de-
noted by symbols in typewriter font , e.g. I. Vectors and
vector functions are typically represented by bold symbols,
and scalars are indicated by plain letters, e.g x = (x, y)

T

and f(x) = (fx(x), fy(x))
T.

2. Background theory
2.1. Fundamental matrix estimation

The epipolar geometry representation is contained in the
fundamental matrix. The fundamental matrix F is a 3 ×
3 matrix, which given an image stereo pair (I, I′), relates
two corresponding points x ∈ I and x′ ∈ I′ through the
epipolar constraint:

x′TFx = 0. (1)

Geometrically this means that a point x lies on the epipolar
line defined as l = x′TF, and similarly for x′: l′ = xTFT.
A not necessary yet relevant step during the estimation of
F is the normalization of the data. This pre-processing step
permits to improve the conditioning of the problem and the
stability of the estimated F matrix. We adopt the Hartley’s
normalization algorithm [6] that consists in finding a trans-
formation T such that the centroid of x̂ = Tx is coincident
with the origin and the RMS distance of all points to it is√
2 [6]1. After a proper algebraic manipulation of Eq.1,

it is possible to build an observation matrix A that verifies
Af = 0, with

f = (F(1,1), F(1,2), F(1,3), · · · , F(3,1), F(3,2), F(3,3))
T

and F(i,j) denoting the F element in the ith row and jth col-
umn. A singular value decomposition is then applied on A
(such that A is decomposed as A = USVT) with the solution

1A similar transformation is computed for x′:x̂′ = T′x′

for f being the vector of V coincident with the minimum
singular value of S.

For non perfect data, this fundamental matrix does not
properly model the epipolar geometry since the epipolar
lines do not intersect in a unique epipole. The rank 2 con-
straint is imposed by computing the SVD of Ffullrank, set-
ting the smallest eigenvalue to zero (S→ Ŝ) and computing
F using F = UŜVT. The fundamental matrix is finally de-
normalized by: F = T′TFT. This algorithm is called the
8-point normalized algorithm [6].

2.2. Robust estimation schemes

For robustness against erroneous point correspondences,
the estimation of the fundamental matrix is typically per-
formed by running the 8-point algorithm inside a Sam-
ple Consensus framework [3, 4, 14, 21, 22]. The RANSAC
(RANdom SAmple Consensus) [3–5], or its variants, starts
by sampling at random 8 correspondences for an initial esti-
mation of the F matrix. The hypotheses are ranked accord-
ing to a certain criterion [19] and the set of point correspon-
dences is divided into inliers and outliers based on how well
they fit the epipolar geometry defined by the winning can-
didate. The RANSAC cost function concerns maximizing
the number of inliers, i.e. it outputs the F that best fits the
matching points.

Recently some other methods based on RANSAC have
been proposed. The MLESAC [23] (Maximum LikElihood
SAmple Consensus) is a generalization of RANSAC. The
MLESAC employs the same point selection strategy but the
solution for F is selected as the one that maximizes a like-
lihood function, i.e. the shape of a normal distribution in-
stead of the number of inliers. MAPSAC [21] (Maximum
A Posteriori SAmple Consensus) extended the MLESAC
framework by including Bayesian probabilities during the
minimization step, which provides more robustness against
noisy correspondences and outliers.

Closely related work to ours can be found in [3, 20]. In-
stead of performing random sampling of the image corre-
spondences, both methods guide the sampling procedure
using the matching scores of the putative matches. While
in [20], Tordoff and Murray replaced the random sampling
in MLESAC with a sampling guided that uses the probabil-
ity of correctness of individual correspondences, Chum and
Matas [3] proposed to sample progressively larger subsets
of top-ranked correspondences. In fact, they do not fuse ge-
ometric with appearance constraints since these constraints
are used at different steps of the algorithm. Our contribution
is different in the sense that we use appearance to weight
the F hypothesis, and not to select the initial set of matches.
In fact, our contribution is at most complementary to [3].
In this paper we are interested in observe if the proposed
cost function is superior to the standard distance-based cost
functions and, therefore, the methods of [3, 20] won’t be
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Figure 1. Analysis of the parametrization of the selected distance weighting functions.

evaluated.
One typical post-processing step consists in refining

the best hypothesis obtained from the RANSAC-like al-
gorithms. This refinement step starts by using all inlying
matches (and not only the initial eight matches of the sam-
ple) to re-compute a new estimation of F. Then, a search
for new matching points is performed based on the distance
of the points to the corresponding epipolar lines. Typically
these two steps are iterated until the number of inliers con-
verge [7]. In this paper, we propose an alternative solution
to this refinement algorithm that considerably improves the
accuracy of the F matrix.

3. Fusing distance and appearance metrics for
estimating F

When estimating the fundamental matrix inside a Sam-
ple Consensus framework, a cost function must be used
for performing the selection of the best estimation of F.
Standard cost functions typically involve maximizing the
number of inliers that fits in the estimated epipolar geom-
etry [4,5,22], or minimizing the Sampson distance [21,23],
which is a first-order approximation of the geometric er-
ror [7]. For instance, the RANSAC algorithm can be seen as
an optimization method that maximizes the following cost
function [19]:

C(ε) =

{
1 if ε < t

0 otherwise
, (2)

where ε is the Sampson (or other proper) distance [7], and t
for the inlier/outlier decision threshold. Despite the fact that
different points might have different geometric errors, this
is a binary decision that assumes that all points verifying the
selection criteria contribute equally for maximizing C(·).

3.1. Putting distance and appearance in C(·)

In this paper we argue that different distance magnitudes
can provide different weights for the solution of F, and that
using distance weighting functions with appearance metrics

can be used for improving the estimation of the fundamen-
tal matrix, which we confirm later in the experimental eval-
uation. We start this section by analyzing several distance
weighting functions, and by providing an intuitive explana-
tion of how each function affects the estimation of F.

3.1.1 Analysis of different distance weighting functions

In this section we analyze three different distance weight-
ing functions. For maximizing C(ε) we select the following
weighting functions for the Sampson distance:

• Inverse Weighting Func.: IWF = 1/1+εn (3)
• Bell-shaped Weight. Func.: BSWF = 1/1+(|ε|/a)2n (4)
• Exponential Weight. Func.: EWF = exp(−kεn) (5)

The IWF has only one parameter, which controls the
decay of the weights with the distance. As we increase
n, more weight is given to points with low geometric er-
ror. Points with lower localization precision will probably
be rejected during the estimation of F. The BSWF can be
seen as a generalization of the previous IWF. This weight-
ing function has two parameters: a controls the aperture of
the function (weight given to larger distance errors), while
n controls the decay of the weighting. If we increase simul-
taneously (a, n) the BSWF allows to select inliers that do
not accurately fit the estimated epipolar geometry, which
can be relevant for applications that need a large number
of matches instead of an accurate fundamental matrix esti-
mation [1]. Finally, the EWF weights the distance using a
decaying exponential with two parameters (k, n). The test
of the two parameters allows to observe that k controls the
aperture and n controls the decay of the weighting function.
Apparently, this function seems to provide the best trade-
off between an accurate estimation of F and the number of
inliers provided.

Let us consider that two different matches have a simi-
lar geometric error. Is it possible to further distinguish the
weight between the points? Appearance matching informa-
tion can be included in the cost function to accomplish this
task.
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3.1.2 Including appearance in the cost function

Typically the matching information between two sets of fea-
tures is disregarded during the estimation of the fundamen-
tal matrix, being only used for establishing the set of pu-
tative correspondences. However, it can provide a reliable
metric to distinguish between higher and lower confidence
matches. Including an appearance weighting term in the
cost function can be accomplished as follows:

C(ε,A) = Cε · CA. (6)

Cε can be one of the functions plotted in Fig. 1 and for CA
we adopt the simple normalized cross-correlation with local
pixel intensities:

CA =

∑
x T(x)T

′(x+ u)√∑
x T(x)

2
∑

x T
′(x+ u)2

, (7)

with T and T′ denoting two local image patches. Note how-
ever, that our cost function can be used with more powerful
descriptors, such as SIFT or GLOH, by using a simple de-
caying exponential (like the EWF) of the Euclidean distance
between the descriptors. Including this cost function in an
existing algorithm is a straightforward task, since the goal
is always to compute the solution that maximizes Eq. 6. For
RANSAC, we adapt the cost function of Eq. 2 as follows:

C(ε,A) =

{
Cε · CA if Cε · CA > t

0 otherwise
, (8)

while for a MAPSAC-based algorithm we simply substitute
the traditional cost by:

C(ε,A) = max(Cε · CA, t). (9)

Henceforth, and to avoid confusing with the traditional im-
plementation of this methods, we will refer to them as
RANSAC(ε,A) and MAPSAC(ε,A), respectively. Note that
Eq. 9 also weights the influence of the outliers during the
estimation of F. In theory there is no need to impose such
threshold t for the MAPSAC algorithm since we are already
weighting the outliers by computing only C(ε,A) = Cε ·CA.
We only employ the threshold t for classifying the matching
points as inliers or outliers. In practice, we do not observe
any implication in thresholding the cost of Eq. 9 in terms of
computational time, and accuracy of F.

3.2. Search of new matching points for refining F

Up to now, we discussed the new cost function, the as-
pects that should be taken into account when selecting the
distance weighting function, and how to include Eq. 6 in
the conventional Sample Consensus frameworks.

Now we present a refinement step for the estimation of
F that searches for new correspondent points to improve the
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Figure 2. Data sets used under simulation.The cross represent
points with a correct correspondence while the dark circles repre-
sent outlier points with no correspondence in the other view. The
data sets have 33% and 21% of outliers, and 160 and 295 inliers,
respectively.

accuracy of the method. As input our algorithm takes: a
set of candidate correspondences, automatically computed
using appearance similarity; and the features detected with
any keypoint detector [12, 16] in both images (the number
can be different in each image). We use MAPSAC(ε,A) with
a few hundreds iterations (about 500) for performing a pre-
liminary estimation of the fundamental matrix. After this
fairly good estimation of the model, we only use the im-
age features detected (and corresponding local brightness
patches) in both images. A proper selection of new point
correspondences is thus based using both local appearance
and epipolar geometry constraints through Eq. 6.

One important observation is that it is impossible to find,
for each point in one view, a single corresponding point in
the other view, since there is no keypoint detector that is
fully invariant to perspective changes due to camera motion.
This means that nothing can assure that the features detected
in one image are detected in the other view. Therefore, only
points that verify Cε · CA > t (see line 6 of Algorithm 1)
are selected as matching points. At each iteration of the
method a new estimation of F is performed and a new search
for inliers is performed. The algorithm is iterated until no
improvement is obtained and convergence to the solution
is obtained. The overall procedure for the estimation the
fundamental matrix is shown in algorithm 1.

3.3. Simulation Experiments

Herein we evaluate different weighting functions using
two stereo image pairs (Fig. 2) with ground truth, us-
ing the data sets provided by [24]. We test the 3 dis-
tance weighting functions previously described using the
following parametrization: (i) IWF - n = 2; (ii) BSWF -
(n, a) = (3, 3); and (iii) EWF - (n, k) = (2, 0.1). We have
experimentally observed that these are the parametrizations

402402
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Figure 3. Noise applied in appearance and feature position. For each experiment (subfigure) we evaluate the percentage of inliers retrieved
(graphics on the left) and geometric error (graphics on the right).

Algorithm 1: Fundamental Matrix Estimation
Require: Stereo pairs of Images Il and Ir
Ensure: Fundamental matrix (F)

1: Compute images keypoints with Harris Corner
detector and correspondences using CA(x,x′)

2: Store all appearance relations CA(x,x′);
3: Use MAPSAC(ε,A) to obtain Finit;
4: Initialize Ff = Finit and εf as the average Sampson

distance;
5: while εf do not converge do
6: Search x↔ x′ pairs based on Cε · CA constraints
7: Solve nonlinear least-squares for

x′TFx s.t. max C(ε,A)

8: Evaluate solution using the Sampson distance εc
9: if mean(εc) ≤ εf then

10: εf = mean(εc);
11: Ff = F;
12: end if
13: end while

that provide the best ratio of correct matches/geometric er-
ror for each weighting function.

Since our cost function encodes both local appearance
and geometric error, two different experiments were con-
ducted. In Fig. 3(a) we added Gaussian noise with an in-
creasing standard deviation, up to σ = 0.05, to the local
image patches using the Matlab imnoise() function. We
selected this maximum value for σ since it was used in
relevant image retrieval studies [8]. In the experiment of
Fig. 3(b) we added noise to the keypoint GT position up

to σ = 0.5. For each experiments, we used as evaluation
metric the Inliers/GTpoints ratio (graphics on the left) and
Sampson distance (graphics on the right).

From the analysis of Figs. 3(a) and 3(b), we can observe
that, as we expected, IWF provides the estimation of the
fundamental matrix with lower geometric error, at the ex-
pense of a considerable lost in the inlier points/GT points
ratio. The BSWF clearly outperforms the two other distance
cost functions in terms of the number of inliers retrieved, at
the expense of providing the less accurate estimation of F.
The EWF-version of our cost function seems to merge the
strengths of IWF and BSWF, providing the best trade-off
between number of inliers/geometric error.

In the sequel of the paper we evaluate our algorithm us-
ing both the BSWF- and EWF-versions of the proposed
function. We aim to show that our algorithm it able to find
more correspondent points than the standard methods for
computing F while keeping the estimation very accurate.

4. Experimental Validation with Real Imagery

The previous section concerned the study of a new cost
function to be used in a Sample Consensus framework for
estimating the fundamental matrix. We also describe a new
refinement step that relies on all the detected keypoints, and
not only on the putative matches. The proposed cost func-
tion and refinement algorithm were evaluated under simula-
tion, which allowed to draw preliminary conclusions about
the advantages and drawbacks of each distance weighting
function. Now, we focus on the evaluation of the proposed
metric and algorithm in a set of real imagery experiments,
where no ground truth correspondences are available.
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Figure 4. Data sets used in real experiments. Note that the data
sets contain repetitive patterns, which difficult the task of matching
using simply local image intensity values.

4.1. Benchmarked Experiments of [2]

In this section we evaluate the proposed RANSAC/
MAPSAC(ε,A) with the EWF- and BSWF-versions of the
proposed cost function against the common implementa-
tions [7, 21]. We use the fundamental matrix toolbox used
in [2]2. For a fair comparison with our refinement algo-
rithm described of section 3.2, we also include a standard
guided-matching procedure [7] where further interest point
correspondences are determined using the estimated epipo-
lar geometry, with F being re-estimated using a non-linear
procedure as decribed in [7]. We call this method MAP-
SAC+Refine MIN DIST.

For the image interest point detection we use our imple-
mentation of the Harris corner detector. Like in the sim-
ulation experiments, we just rely on pixel intensity values
to encode the local appearance of the image features, with
the similarity between feature patches being measured us-
ing normalized cross-correlation. As discussed earlier, us-
ing a scale invariant detector/descriptor [12, 15, 16] is quite
straightforward with possible positive impact in more diffi-
cult situations, such as severe viewpoint.

The data set used for the evaluation can be seen in Fig.
4. It comprises a set of difficult situations, such as scale
changes, wide-baseline and repetitive patterns. We adopt
the benchmark evaluation criteria proposed in [2]: (i) the
error in the fundamental matrix estimative using Sampson
distance (Fig. 5(a)) [2,7]; (ii) number of inliers/correct cor-
respondences provided by each method (see Fig. 5(b)); and
(iii) the computational time that each method requires to
find a plausible solution (see Fig. 5(c)).

4.1.1 Results and their discussion

We will start the analysis by comparing the performance
of the common RANSAC/MAPSAC implementations with

2This toolbox provides the Matlab implementation of the methods sup-
plied by the correspondent authors.

the RANSAC/MAPSAC(ε,A). The binary decision rule typ-
ically used in RANSAC does not provide a proper weight-
ing for the final F solution. This is visible only by making a
comparison between RANSAC and MAPSAC that employs
different weights for different keypoint distances. Including
our cost function in these algorithms clearly brings benefits
in terms of the geometric error of the estimation and of the
computational time required for estimating F. This corrob-
orates our argument that different keypoint geometric er-
ror must be weighted differently, and that appearance cues
should be used inside the cost function for better distinguish
between high and lower confidence correspondences.

The inclusion of the refinement step Refine MIN DIST
[7] as a complement to the MAPSAC framework brings
clear benefits in terms of the geometric error obtained and
in terms of the number of correspondences. We can also ob-
serve that our cost function outperforms this state-of-the-art
algorithm in every evaluation criteria. In fact, our metric has
one important advantage when compared to the distance-
based cost function: wrong matches that verify the epipo-
lar geometry are discarded if they present low correlation
scores. Due this, the estimation of the fundamental matrix
is very accurate at the first refinement steps, which permits
to robustly incorporate new matching points without ruining
the estimation in the subsequent steps.

For all the cases tested, we have seen that the standard
state-of-the-art methods that rely solely on point correspon-
dences tend to provide a faster solution than the method
herein presented (Fig. 5(c)). This was expected since our
method requires an initial estimative of F for searching all
possible correspondences using Eq. 6. Nevertheless, our
method tends to be faster than its direct competitor (MAP-
SAC+Refine MIN DIST), while providing a higher number
of inliers and a better estimation of the fundamental matrix.
The faster convergence of our method happens mainly for
two reasons: (i) the local matches scores are computed of-
fline and stored into memory, i.e. they are not re-computed
at every iteration of the method; (ii) since we provide more
confidence to highly reliable correspondences based on geo-
metric and appearance constraints the method tends to con-
verge faster to the correct solution of the fundamental ma-
trix.

4.2. Structure-from-Motion Experiments

In this section we perform a set of SfM experiments to
access the usablity of our algorithm in this type of appli-
cations. We consider 2 data sets with 5 images each (two
images of each sequence can be seen in Fig. 6). Every
possible pair combination is performed, which totalizes 10
image pairs per sequence. We use the same algorithm as be-
fore for extracting and describe the local image keypoints.

The relative motion estimation is performed using the
epipolar geometry. We start by estimating the fundamen-
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Figure 5. Real Experiments. (a) compares the geometric error between the evaluated methods (note that the results are in logarithmic
scale); (b) the number of inliers provided by each method, and (c) the computational time required by each method for selecting the best
F. The results were average over 100 runs of each method.
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Figure 6. Datasets used in SfM experiments. The average num-
ber of initial correct matches obtained with MAPSAC for each
sequence are of 55.9± 7.8 for DS 1 and 309± 12.7 for DS 2.

tal matrix F. Afterwards, we compute the essential matrix
using E = KTFK, where K represent the camera intrinsics.
Finally, E is factorized to obtain the relative displacement
between frames [13].

In this set of experiments we only consider the EWF-
version of our algorithm, which provide the best trade-off
between inliers/geometric error, and the MAPSAC+Refine
MIN DIST, with the results being averaged over 50 trials of
each method. For the sake of a fair comparison, we initialize
both methods using MAPSAC with 500 iterations for com-
puting the initial estimate of the fundamental matrix Finit.

4.2.1 Results and their discussion

Table 1 shows the experiment comparison between the two
refinement algorithms in SfM tasks. As is typical in these
type of situations we evaluate the re-projection error as a
measure of the quality of the estimated fundamental matrix.
It can be seen that our re-projection error is significantly

lower than that of Refine MIN DIST, which is a consequence
of the highly quality estimation of the F matrix. Also im-
portant is the fact that our methods returns a higher number
of inliers points, which is relevant if detailed 3D reconstruc-
tions are required.

It is also interesting to observe that for the DS1 the stan-
dard Refine MIN DIST approach presents two times more
variation in terms of inliers retrieved than our method. This
means that using only distance in the refinement steps is
more sensitive to a noisy initialization then our algorithm.
Since our algorithm is more robust to a noisy initialization,
it is capable of robustly incorporate new inliers without ru-
ining the estimation of the refined F matrix.

5. Conclusions

In this paper we present a new cost function that fuses
appearance and geometric error. An intuitive analysis of the
role of each component is provided, with clear benefits aris-
ing when including this cost function in standard estimation
frameworks, such as RANSAC or MAPSAC. We also pro-
pose and validate a new refinement algorithm, that takes as
input a set of correspond-less keypoints and an initial es-
timation of the fundamental matrix. The proposed metric
and algorithm are evaluated using simulation and real ex-
periments, with clear benefits in terms of geometric error
and the number of inliers retrieved.

Finally, it is important to discuss how to select the best
distance weighting function concerning the type of high-
level vision application. For image retrieval/matching ap-
plications [1], the BSWF is clearly the best choice since it
provides a higher number of correspondences. On the other
hand, in a motion recovery scenario [11] an accurate esti-
mation of the epipolar geometry is preferred, with the best
choice for this case being the IWF. For 3D reconstruction,
where the accuracy of the fundamental matrix estimation is
as important as the number of inliers retrieved, we advise to
use the EWF-version of our cost function.
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Table 1. Evaluation in Structure from Motion scenario. The last
three columns compare the two refinement algorithms in terms of
number of 3D points reconstructed, re-projection error (in pixels)
and computation time (in seconds).

Method Inliers F Rep. Err. Time

D
S

1 Refine MIN DIST 335 ± 34.2 1.9 ± 1.2 3.5 ± 1.1
Ours 402 ± 16.9 0.8 ± 0.6 2.5 ± 0.8

D
S

2 Refine MIN DIST 575 ± 15.4 1.5 ± 1.1 2.7 ± 0.6
Ours 648 ± 12.1 0.62 ± 0.45 2.1 ± 0.9

As future work, we will investigate the integration of
more powerful image description schemes in the proposed
cost function, and its practical implications in image se-
quences with large viewpoint variations.
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